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Letters__________________________________________________________________________________________

Comments on “Internal Impedance of Conductors of
Rectangular Cross Section”

F. Medina and R. Marqués

In the above paper,1 Antonini et al.discuss some interesting ques-
tions concerning the ac internal impedance of rectangular cross-sec-
tional conductors (such as those typically used as transmission lines
and interconnects in many microwave and digital printed circuits). The
authors of the above paper present calculations showing that the real
(R) and the imaginary (!Li) parts of the alternate current (ac) internal
impedance (Z = R+j!Li) are not identical for that type of conductors
even if a strong skin-effect condition prevails. Following the authors
discussion, this would be in sharp contrast with the equality (R = !Li)
commonly accepted in textbooks for very high operation frequency. If
R = !Li can be assumed, the internal inductanceLi can be trivially
obtained from the calculated value ofR. However, this assumption is
what is considered wrong or inaccurate in the above paper for the spe-
cific case of rectangular cross-sectional conductors. On the other hand,
the authors of the above paper raise a question about the foundations
of the well-known Wheeler’s rule when applied to rectangular con-
ductors. Apparently Wheeler’s rule relies on the high-frequency resis-
tance and internal inductive reactance being equal. However, although
this premise seems to be violated in the case of rectangular conduc-
tors, Wheeler’s rule yields reasonably accurate results in this case. We
would like to share with the authors of the above paper and other inter-
ested colleagues some considerations concerning the above-mentioned
conclusions and paradox.

From the reading of section III in the above paper, it seems that the
authors attribute the difference between the real (R) and imaginary
(!Li) parts of the internal impedance to the existence of right-angle
corners in the rectangular cross-sectional geometries. These corners
would be responsible for the nonconstant distribution of the currents
along the periphery of the conductors, and this fact makes it a different
internal resistance and reactance. However, in our opinion, there is a
problem hidden in this argument. In order to illustrate the nature of the
problem, let us compare some numerically computed results reported
in the above paper with results analytically obtained for two simpler
geometry wires having the same dc resistance (Rdc). The cross sec-
tions of the structures under comparison are shown in Fig. 1, where
conductivity and dimensions are given. Note that the surface of the
cross sections and the conductivity are the same for all the three wires,
thus, they have all the same value ofRdc. Fig. 1(b) is an idealized ver-
sion of the square wire considered in the above paper [see Fig. 1(a)],
where corner effects are suppressed by imposing magnetic boundary
walls at two parallel sides. Closed-form expressions for the internal
impedance of this structure are readily obtained through elementary
calculations. These expressions are valid for any frequency, including
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Fig. 1. Cross section of the wires whose internal impedances are compared
in Fig. 2. (a) An example structure analyzed in Fig. 6 of the above paper. (b)
The same structure with magnetic walls eliminating corner effects. (c) Round
wire having the same dc resistance as the previous wires. Dimensions:W =

4:62 mm,r = W=
p
�. Conductivity:� = 5:72� 10 (
� m) .

Fig. 2. Internal resistances (solid lines) and reactances (dashed lines) of the
wires in Fig. 1. Thick lines correspond to data appearing in Fig. 6 in the above
paper for the structure in Fig. 1(a).

negligible to strong skin-effect operation. Fig. 1(c) is a cylindrical cir-
cular wire whose internal impedance is known in closed form in terms
of Bessel functions for any frequency (see, e.g., [1, pp. 180–186]). We
have reproduced in Fig. 2 the numerically computed data reported in
Fig. 6 in the above paper [internal resistance and reactance of the struc-
ture in Fig. 1(a)] and analytical exact data for the structures in Fig. 1(b)
and (c). We can see that the real and imaginary parts of the internal
impedance are very close in the case of Fig. 1(b). There is a small dif-
ference because, for the range of frequencies included in this figure,
the skin depth is not yet negligible in comparison withW . However,
it is true that if frequency is increased,R becomes identical to!Li in
this case. However, the internal impedance of the circular cross-sec-
tional wire [see Fig. 1(c)] presents a behavior very similar to the one of
the square cross-sectional wire, even though the round wire obviously
has no corners. In our opinion, for the structure shown in Fig. 1(b), we
findR = !Li (when skin effect is developed) because the electromag-
netic field (EMF) inside the conductor is exactly a uniform plane wave,
as assumed in the derivation of the high-frequency internal impedance
formulas, and not only because the EMF is constant along the periphery
of the conductor. In fact, the EMF is uniform around the circular wire
surface, butR 6= !Li because a cylindrical wave instead of a plane
wave exists inside the conductor. The cylindrical solution approaches

0018–9480/01$10.00 © 2001 IEEE



1512 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 8, AUGUST 2001

the plane wave limit only if� � r0 (� is the skin depth). This result
can be generalized saying that, in order to haveR � !Li, the curva-
ture radius must be large in comparison with the skin depth. In the case
of rectangular cross-sectional conductors, this condition is not fulfilled
in the vicinity of the corners. Thus, even though each side is a planar
surface, the EMF is strongly nonuniform along the conductor surface
(as it is stated in the above paper), thus providing a place to an inner
EMF that is not the one assumed in the derivation of the conventional
strong skin-effect formulas. There is still a noteworthy point to be em-
phasized in connection with this question. From inspection of Fig. 2
and from analytical calculations, we can verify that, if the skin effect
is strong,R � !Li in the sense(R � !Li) ! 0 when! ! 1,
only in the case of the structure in Fig. 1(b). In the case of the round
wire [see the structure in Fig. 1(c)], it can be readily demonstrated that
R � !Li ! 0:25 Rdc when! ! 1 (this difference betweenR
and!Li can be appreciated, e.g., in [1, Fig. 4.5(a) and (b)]). This dif-
ference is negligible for very high frequencies because, in such case,
R � !Li � Rdc. Therefore, we can always say thatR=(!Li) ! 1
when! !1, and it is in this sense that Wheeler formulas are correct.
However, the above-mentioned difference becomes important when the
cross-sectional dimensions are just a few times the skin depth, as hap-
pens in Fig. 2. This is the difference that is observed in the curves
shown in the above paper. As can be seen, this difference cannot be
considered a specific feature of rectangular cross-sectional conductors
or exclusively related with the presence of corners. Note that, if we are
correct, all this would provide an answer to the open question formu-
lated in the last sentence of the above paper, namely, “The reason why
Wheeler’s rule seems to give reasonably accurate values of resistance
when skin effect is well developed even though the basic premise is
violated is not understood.” The problem is in the concept “well de-
veloped skin effect.” The authors of the above paper seem to consider
that the skin effect is well developed if the transverse dimensions of
the wire are a few times the skin depth. However, from the study of the
circular wire, it is obvious that the resistance coincide with the “high
frequency” (Wheeler) formulas when skin depth is meaningfully small
in comparison with the curvature radius of the conductor contour. If
this condition is not fulfilled, Wheeler’s expressions would be just ap-
proximated, independently of the existence of corners. However, it is
true that the existence of corners makes the difference betweenR and
!Li larger than if corners were not present, but this is a rather obvious
result.

There is still another point deserving attention in connection with
conductors having right angles such as those involved in this paper.
Let us consider the square conductor of the example in the previous
paragraph as one of the conductors of a two-wire transmission line.
The total per unit length (p.u.l.) inductance of the transmission line, if
strong skin-effect operation is assumed, can be usually split into two
contributions: the external inductance, associated to the magnetic field
existing in the dielectric medium around the wire, and the internal in-
ductance, associated to the magnetic field penetrating the conductor.
The external inductance is considered to be identical to the inductance
of the transmission line when the conductors are considered perfect.
This assumption is justified at any frequency (including weak skin-ef-
fect operation) for structures having a high degree of symmetry. For
instance, the external inductance of a conventional coaxial transmis-
sion line is the same under weak or strong skin-effect conditions: the
external magnetic field does not depend on the particular distribution
of the current inside the inner conductor, whereas cylindrical symmetry
is respected. For more general situations, the assumption of an external
magnetic field identical for the line made of perfect and nonperfect
conductors is valid if the skin depth is very small in comparison with

local curvature radius of the contour curve describing the geometry of
the conductor. It is clear than for rectangular cross-sectional wires, the
external magnetic field is not identical to the field for the structure with
perfect conductors, at least in the neighborhood of the corners. There-
fore, we cannot rigorously say that the total inductance is the summa-
tion of the internal inductance and the inductance of the same structure
made of perfect conductors. A more general interpretation of the model
would be based on the consideration of anincrementalinductance as-
sociated to the nonperfect nature of the conductors rather than anin-
ternal inductance. This incremental inductance would be the difference
between the total inductance of the lossy line and the total inductance
of the lossless line. This parameter would not coincide with the internal
inductance computed from the internal magnetic energy stored inside
the conductors, such as it is carried out in the above paper. The external
inductance could be calculated from the computed values of the cur-
rent density and magnetic potential vector inside the lossy conductors
since the expression of the magnetic energy in terms of such quantities
includes the true external magnetic energy. Now, by substracting the
inductance of the lossless transmission line, we have the incremental
inductance, which should be used to model the inductive effect due to
the lossy nature of the conductor instead of the internal inductance. Ob-
viously, for very strong skin-effect operation or for conductors having
smooth contours, the distinction between incremental and internal in-
ductance has no meaning. It would be interesting to explore which of
those inductances (incremental or internal) yields a reactance closer to
the ac resistance in the case of rectangular conductors or conductors
having corners.
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Authors’ Reply

Giulio Antonini, Antonio Orlandi, and Clayton R. Paul

The authors of the above paper,1 intended to demonstrate the
following point about conductors that have rectangular cross sections.
The per-unit-length resistancer and per-unit-length internal inductive
reactance!li are considerably different at high frequencies where
skin effect is well developed, which is in contrast to conductors of
circular–cylindrical cross section (wires). There is the question of
what is meant by skin effect being “well developed.” First, consider
the case of a wire of radiusrw . We compare that radius to a skin
depth � = 1=

p
�f��, where f is the frequency of excitation,
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TABLE I
RATIO OF RESISTANCE TOINTERNAL INDUCTIVE REACTANCE VERSUS

THE CONDUCTOR HALF-WIDTH IN SKIN DEPTHS FOR

A 4.62 mm� 4.62 mm CONDUCTOR

� = 4� � 10
�7 is the permeability, and� = 5:8 � 10

7 is the
conductivity of the metal that is assumed to be copper in the above
paper. For frequencies whererw=� > 1, the resistance begins to
increase from its dc value as

p
f and the internal inductance decreases

at that rate. It is demonstrated in [1, p. 182] that the resistance and
internal inductive reactance of a wire converge as the frequency
increases without bound, i.e.,r=!li ! 1 as! ! 1. The question
here is how the rate of convergence for wires compares to the rate of
convergence for conductors having rectangular cross sections and 90�

corners. This behavior is graphed for wires in [1, Figs. 4.5a and b].
The convergence is rather rapid initially once the wire radius exceeds
the skin depth. For the highest frequency shown in [1, Fig. 4.5b],
where the wire radius is 14 skin depths, i.e.,rw=� = 14, the ratio of
resistance to internal inductive reactance is aboutr=!li �= 1:05, and
in the rangerw=� > 4, the convergence appears to proceed rather
slowly. Based on this rate of convergence, we might say that skin
effect seems to be rather well developed with respect to this rate of
convergence when the wire radius is on the order of 4–6 skin depths.

Now contrast this with the results for conductors of rectangular cross
section that were investigated in the above paper. Several cross sections
were investigated, i.e., 1.4 mil� 15 mil, 50�m� 50�m , and 4.62 mm
� 4.62 mm. Observe the case of the 4.62 mm� 4.62 mm cross sec-
tion, where the resistance and internal inductive reactance are given at
100 MHz in Table I of the above paper asr=!li �= 1:314. In other
words, the resistance is some 31% higher than the internal inductive
reactance at 100 MHz. However, at 100 MHz, one-half of the width
(2.31 mm) is 350 skin depths. These results have been recently recal-
culated for a frequency of 500 MHz. The ratio of resistance to internal
inductive reactance isr=!li �= 1:248. In other words, the resistance
is some 25% higher than the internal inductive reactance at this higher
frequency of 500 MHz. However, at 500 MHz, one-half of the width
(2.31 mm) is 782 skin depths. These results are tabulated in Table I.
This indicates that the convergence of resistance to internal inductive
reactance for rectangular cross sections can be much slower than for
the case of a wire. Unlike the case of a wire, which can be solved ana-
lytically, the rectangular cross-section case has not been solved analyti-
cally. However, like the wire, it seems plausible to expect the resistance

and internal inductive reactance to converge as frequency increases
without bound. However, our data indicate that this convergence oc-
curs much more slowly than for a wire.

In the above paper, we commented that Wheeler’s rule is frequently
used to compute high-frequency resistance and loss for conductors of
rectangular cross section such as a microstrip. However, Wheeler’s
rule ideally requires that the high-frequency resistance and internal
inductive reactance be equal in order to be valid. Wheeler also pointed
out that his rule is valid only for conductors whose radius of curvature
is much greater than the skin depth. While these restriction can be
reasonably satisfied for wires, they do not seem to be as well satisfied
for rectangular cross sections as for wires. Regarding the accuracy
of Wheeler’s rule when used for conductors of rectangular cross
section, consider Holloway and Kuester’s paper [2], in which they
compare the results of Pucelet al. [3], where the losses are computed
using Wheeler’s incremental inductance rule, to a new formulation
and methods of computation. They show for microstrip lines that
results such as in [3], which are based on Wheeler’s rule, can give loss
predictions that are in error by some 12%–30%. The authors may wish
to consider other papers by Holloway and Kuester regarding the effect
of edge shape on conductor loss, e.g., [4] and [5]. These papers tend
to support the notion that when the ratio of thickness of rectangular
conductors to skin depth becomes large, edge shape can be important
and may become important in calculating conductor loss unlike wires.
The authors state in their comments, “However, it is true that the
existence of corners makes this difference betweenR and!Li larger
than if corners were not present, but this is a rather obvious result.”
On the contrary, it appears through the extensive use of results based
on Wheeler’s rule to compute loss that this is not so obvious.

Finally, the authors comment on the case of two conductors and
the separation of the total per-unit-length inductance of two-conductor
lines into internal and external inductance components. While their
suggestions may have merit, we only intended to address the single-
conductor case in the above paper.
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